NOTE OF ELEMENTARY ANALYSIS II

CHI-WAI LEUNG

1. RIEMANN INTEGRALS

Notation 1.1. .

(i) : All functions f, g, h... are bounded real valued functions defined on [a,b]. Andm < f < M.
(ii) : P:a=xy < w1 < .. <a,=> denotes a partition on [a,b]; Ax; = x; — x;—1 and
||| = max Az;.
(i) : M;(f,P) = sup{f(x) : = € [xi—1,zi}; mi(f,P) = inf{f(x) : = € [wi_1,2;}. And
Wz(f, fP) = Ml(fv fP) - ml(fv iP)
(i) : U(f,P):=> M;(f,P)Ax;; L(f,P) :== > mi(f,P)Ax;.
(0) - R(FPAEY) = 3 F(6)Ads, where & € [ri_1.17).

(vi) : Rla,b] is the class of all Riemann integral functions on [a,b].
Definition 1.2. We say that the Riemann sum R(f,P,{&;}) converges to a number A as ||P|| — 0
if for any € > 0, there is 6 > 0 such that
[A=R(f, P, {&})] <e
for any &; € [zi—1,x;] whenever ||P|| < 4.
Theorem 1.3. f € R[a,b] if and only if for any € > 0, there is a partition P such that U(f,P) —
L(f,P) <e.

Lemma 1.4. f € R[a,b] if and only if for any € > 0, there is 6 > 0 such that U(f,P)—L(f,P) <e
whenever || P|| < 0.

Proof. The converse follows from Theorem 1.3.
Assume that f is integrable over [a, b]. Let € > 0. Then there is a partition Q: a =yg < ... <y; = b
on [a,b] such that U(f,Q) — L(f,Q) < e. Now take 0 < § < g/l. Suppose that P:a =1xzp < ... <
2, = b with ||P|| < 6. Then we have
U(f,P) = L(f,P)=1+11
where
:QN(zi—1,7;)=0

IT = S wilf,P)A
QN (i —1,@:)#0

and

Notice that we have
and
IT < (M —m) > Az; < (M —m)-1-
2:QN(xi—1,7;)#£0
The proof is finished. O

%: (M —m)e.
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Theorem 1.5. f € Rla,b] if and only if the Riemann sum R(f,P,{&;}) is convergent. In this case,
b

R(f, P, {&}) converges to / f(x)dx as ||P| — 0.

Proof. For the proof (=) : we first note that we always have

and )
L(f.P) < / f(a)de < U(F,P)

for any &; € [r;—1, ;] and for all partition P.
Now let € > 0. Lemma 1.4 gives § > 0 such that U(f,P) — L(f,P) < ¢ as ||P|| < §. Then we
have

b
| / f(@)dz — R(f,P.{&))] < e

b
as ||P|| < d. The necessary part is proved and R(f,P,{&}) converges to / f(z)dz.

For (<) : there exists a number A such that for any € > 0, there is § > 0,awe have
A_5<:R(f7?a{€l}) <A+e

for any partition P with ||P|| < and &; € [z;—1, x;].
Now fix a partition P with ||P|| < 0. Then for each [x;_1,a;], choose & € [zi_1, ;] such that
M;(f,P) —e < f(&). This implies that we have

U(fvi]))_g(b_a)SiR(fvipa{fz}) <A+te.

So we have shown that for any € > 0, there is a partition P such that

Y
(1.1) / F@)dz <U(,P) < A+e(1+b—a).

By considering — f, note that the Riemann sum of —f will converge to —A. The inequality 1.1 will
imply that for any € > 0, there is a partition P such that

A—5(1+b—a)S/bf(x)dxg/bf(x)da:SA—l—E(l—i-b—a).

The proof is finished. O

Theorem 1.6. Let f € Rle,d] and let ¢ : [a,b] — [c,d] be a strictly increasing C' function with
fla) =c and f(b) =d.
Then f o ¢ € Rla,b], moreover, we have

d b
[ f@iz = [ sons @
Proof. Let A = fcd f(z)dz. By Theorem 1.5, we need to show that for all € > 0, there is 6 > 0 such

that
A= F(B(&R)d (&) Dti| < &

for all & € [tx—1,tx] whenever Q : a =ty < ... < t,, = b with ||Q|| < 0.
Now let € > 0. Then by Lemma 1.4 and Theorem 1.5, there is §; > 0 such that

(1.2) A= flm) Dy < e

and

(1.3) D wr(f,P)Aay < e



for all n € [xg—1,xx] whenever P : c =z < ... <z, = d with ||P| < 6;.

Now put = = ¢(t) for ¢ € [a,b].

Now since ¢ and ¢’ are continuous on [a,b], there is 6 > 0 such that |¢(t) — ¢(t')] < 01 and
|9/ (t) — @' (t')| < e for all t,t infa,b] with |t —t'| < 4.

Now let Q:a =1ty < ... <ty =bwith ||Q]| < d. If we put z, = ¢(tx), then P:c=2p < ... < zp, =
d is a partition on [c,d] with ||P|| < §; because ¢ is strictly increasing.

Note that the Mean Value Theorem implies that for each [t;_1, ], there is & € (tk—1,tx) such that

Azy = ¢(tg) — d(tp—1) = @' (&) Aty
This yields that
(1.4) |Azp — ¢ () Aty| < ety

for any & € [ty—1,tx] for all k = 1,...,m because of the choice of 4.
Now for any & € [tx—1, tx], we have

A= F(O(&)e (&) Ati]| < |A — Zf ¢ (&) At
(1.5) F Y FOENG (G At — > F(B(E))S (&) At
+1) f<¢<£z>>¢’<fkmtk = F(B(ER) (&) Ot
Notice that inequality 1.2 implies that
[A =" FBENS () Atk] = |A = F($(&0) D] < e.
Also, since we have |¢/(£}) — ¢/ (&)| < e for all k = 1,..,m, we have
1> F @GN () At — D> F(S(E0))d (&r) Ati| < M(b— a)e

where |f(z)] < M for all z € [c,d].
On the other hand, by using inequality 1.4 we have

‘¢/(£k)Atk‘ < A.Tk —+ €Atk
for all k. This, together with inequality 1.3 imply that
1" F@(E0)0 (&) Dt — D F(6(€r)) S (&) Aty
<> w(f,P \fﬁ (&x) Atk (- D(&), d(Ek) € [vh-1, k)

<Y wilf, P)(Awg + Aty
<e+2M(b—a)e.

Finally by inequality 1.5, we have
A=) F(0(R)d (&) Atr| < e+ M(b—a)e + &+ 2M(b — a)e.
The proof is finished. H

Example 1.7. Define (formally) an improper integral T'(s) ( called the T'-function) as follows:

I'(s) ::/ 25 e dx
0

for s € R. Then I'(s) is convergent if and only if s > 0.
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Proof. Put I(s) := fol a*le "dx and II(s) := [~ 2" 'e *dx. We first claim that the integral
I1(s) is convergent for all s € R.

In fact, if we fix s € R, then we have
xs—l
lim ——
xirgo e$/2

So there is M > 1 such that "z;—;; <1 for all z > M. Thus we have

[o@) o
0< / 2 e dx < / e *2dr < 0.
M M

Therefore we need to show that the integral I(s) is convergent if and only if s > 0.
Note that for 0 < n < 1, we have

! ! 11 —np if s —1#—1;
()</ :Us_le_””dx</ z* = {5( w) o ifs— 1AL
n n

=0.

—Inn otherwise .

1

Thus the integral I(s) = lim 2~ e ®dr is convergent if s > 0.
n—0+ n

Conversely, we also have

—1 .
/1$81€zd1'>61/11'51d.73_ {68(1—778) lfS—]_;ﬁ—l;
n n

—ellnn otherwise .

So if s < 0, then fnl z° te~*dx is divergent as n — 0+4. The result follows. O

2. UNIFORM CONVERGENCE OF A SEQUENCE OF DIFFERENTIABLE FUNCTIONS

Proposition 2.1. Let f, : (a,b) — R be a sequence of functions. Assume that it satisfies the
following conditions:

(i) : fo(x) point-wise converges to a function f(x) on (a,b);
(ii) : each f, is a C* function on (a,b);
(iii) : f} — g uniformly on (a,b).
Then f is a C'-function on (a,b) with f' = g.

Proof. Fix ¢ € (a,b). Then for each x with ¢ < x < b (similarly, we can prove it in the same way
as a < x < ¢), the Fundamental Theorem of Calculus implies that

falz) = /m f'(t)dt.

Since f], — ¢ uniformly on (a,b), we see that

/fg(t)dt—>/ g(t)dt.
This gives

(2.1) 1@ = [ gt

for all z € (¢,b). On the other hand, g is continuous on (a,b) since each f), is continuous and
fI'— g uniformly on (a,b). Equation 2.1 will tell us that f’ exists and f’ = g on (¢,b). The proof
is finished. g

Proposition 2.2. Let (f,) be a sequence of differentiable functions defined on (a,b). Assume that
(i): there is a point ¢ € (a,b) such that lim fy,(c) exists;
(ii): fl, converges uniformly to a function g on (a,b).



Then
(a): fn converges uniformly to a function f on (a,b);
(b): f is differentiable on (a,b) and ' =g.

Proof. For Part (a), we will make use the Cauchy theorem.
Let € > 0. Then by the assumptions (i) and (%), there is a positive integer N such that

[fm(c) = fu(c)l <& and |fj,(z) — fr(z)] <e

for all m,n > N and for all z € (a,b). Now fix ¢ < x < b and m,n > N. To apply the Mean Value
Theorem for f,,, — f, on (¢, x), then there is a point £ between ¢ and x such that

(2.2) fm(@) = fu(z) = fin(c) = fale) + ([ (&) — fr(&))(z — o).
This implies that

[fm (@) = fu(@)] < [fim(c) = fulO)l + £ () = fo(llz —c| <e+ (b—a)e
for all m,n > N and for all x € (¢,b). Similarly, when z € (a,c), we also have
[fm(2) = fa(2)] <+ (b—a)e.
So Part (a) follows.

Let f be the uniform limit of (f,,) on (a,b)
For Part (b), we fix u € (a,b). We are going to show

i {0 = (@)

T—u T — U

= g(u).

Let € > 0. Since f, — f and f’ — g both are uniformly convergent on (a,b). Then there is N € N
such that

(2.3) [fm(2) = fu(x)l <& and |fi,(2) = fr(2)] <e

for all m,n > N and for all x € (a,b)
Note that for all m > N and z € (a,b) \ {u}, applying the Mean value Theorem for f,, — fy as
before, we have

Fla) = IGe) _ Inl) Z Iy ) — g
for some & between u and .

So Eq.2.3 implies that

fm(@) = fm(w) — fn(x) = f(u)

24 <
(24) | r—u r—u |se
for all m > N and for all z € (a,b) with = # u.
Taking m — oo in Eq.2.4, we have

S =50 @) = In),

T —u T —u
Hence we have

|f($a)::£(u) ()] < ‘f(fﬂi:i(u) B fN(«i:iN(UMJF |fN(92:£N(U) ()
<oy IV gy

So if we can take 0 < § such that |%{LN(“) — fy(w)] < e for 0 < |z —u| <6, then we have

xT

f(x) = f(u)

r—Uu

(2.5) | ~ Fivlw)| < 2¢
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for 0 < |z —u| < §. On the other hand, by the choice of N, we have |f, (y) — fy(y)] < € for all
y € (a,b) and m > N. So we have |g(u) — fj(u)| < e. This together with Eq.2.5 give

flx)— flu
|M — g(u)| < 3¢
T—u
as 0 < |z —u| < 4, that is we have
T—u T —Uu
The proof is finished. ]

Remark 2.3. The uniform convergence assumption of (f)) in Propositions 2.1 and 2.2 is essential.

Example 2.4. Let f,(z) :=tan"! nzx for x € (—1,1). Then we have

/2 if x> 0;

f(z) :=limtan tnaz = { 0 if v = 0;
n

—7/2 if ¢ < 0.

Also g(x) = lim,, f/,(x) = lim,, 1/(1 + n22?) = 0 for all z € (—=1,1). So Propositions 2.1 and 2.2
does not hold. Note that (f],) does not converge uniformly to g on (—1,1).

3. ABSOLUTELY CONVERGENT SERIES

Throughout this section, let (a,) be a sequence of complex numbers.

o0 oo
Definition 3.1. We say that a series Z an s absolutely convergent if Z lan| < co.
n=1 n=1
[e.9]
Also a convergent series Z an 18 said to be conditionally convergent if it is not absolute convergent.
n=1

(_1)n+1

- 1s conditionally convergent when
n

[e.e]
Example 3.2. Important Example : The series Z

n=1

O<a<l.

This example shows us that a convergent improper integral may fail to the absolute convergence or

square integrable property.

For instance, if we consider the function f :[1,00) — R given by

(_1)n+1
nOé

fz) =

if n<z<n+l.

oo
If « =1/2, then / f(x)dx is convergent but it is neither absolutely convergent nor square inte-
1

grable.

Notation 3.3. Let o : {1,2...} — {1,2....} be a bijection. A formal series Zaa(n) is called an

n=1

oo
rearrangement of g Q.-

n=1
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Example 3.4. In this example, we are going to show that there is an rearrangement of the series

oo )
-1 i+1
E i is divergent although the original series is convergent. In fact, it is conditionally
i
i=1
convergent.

We first notice that the series ), 22.1_1 diverges to infinity. Thus for each M > 0, there is a positive
integer N such that

1
M e
Z 2—1°" (+)
=1
for all n > N. Then there is N1 € N such that
Ny

1 1
Zz¢—1_§>1‘

1=

By using (%) again, there is a positive integer No with N1 < Na such that

Ny
1 1 1 1
- — >
Z 20—1 2 + Z 20—1 4 =
=1 N1<i<Na

To repeat the same procedure, we can find a positive integers subsequence (Ny) such that

Ny
1 1 1 1 1 1
_ - B T _ >k
ZZi—l 2+ Z 2i — 1 4+ Z 2i — 1 2k>
i=1 N +1<i<N, Np_1+1<i<Ny,
or all positive integers k. So if we let a,, = ()t and put
p g p

(i) 2i—1 if1<i< Ny orNp_14+1<i<Ng fork>1;
g =
2k ifi=Ni+1 fork>1.

(_1>’£+1

o0 o0
then the series E aq(;) diverges to infinity and is an rearrangement of the series E ~——. The
; )

i=1 =1
proof is finished.

o o0
Theorem 3.5. Let Z an be an absolutely convergent series. Then for any rearrangement Z g (n)

n=1 n=1
oo oo
s also absolutely convergent. Moreover, we have g Gp = E Ag(n)-
n=1 n=1

Proof. Let o : {1,2...} — {1,2...} be a bijection as before.
We first claim that ) aq(,) is also absolutely convergent.
Let € > 0. Since ), |an| < oo, there is a positive integer N such that

|(IN+1|+ """""" +|aN+p’ < E e (*)

for all p = 1,2.... Notice that since ¢ is a bijection, we can find a positive integer M such that
M >max{j:1<0(j) <N}. Then o(i) > N if i > M. This together with (%) imply that if i > M
and p € N, we have

‘G’U(i-i-l)’ toeeee ’aa(i—i—p)‘ <e.

Thus the series ) a,(,) is absolutely convergent by the Cauchy criteria.
Finally we claim that > an = Y, Go(n)- Put I =37 ap and I' = Y7 ag(,). Now let € > 0. Then
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there is N € N such that

N
‘Z_Za"|<5 and  |angq| 4 tlangp| <& oeoeens ()
n=1
for all p € N. Now choose a positive integer M large enough so that {1,..., N} C {o(1),...,0(M)}

M

and |I' — Zaa(i)| < e. Notice that since we have {1,..., N} C {o(1),...,0(M)}, the condition ()
=1

gives Z

N M
1D =Y amls D lal<e
n=1 =1 N<i<oo
We can now conclude that

N N M M
=V = D anl +1D_an =D o] + 1 ase — 1] < 3=
n=1 n=1 =1 i=1
The proof is complete. U]
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